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Abstract

Sample size and statistical power are important factors to consider when plan-

ning a research synthesis. Power analysis methods have been developed for

fixed effect or random effects models, but until recently these methods were

limited to simple data structures with a single, independent effect per study.

Recent work has provided power approximation formulas for meta-analyses

involving studies with multiple, dependent effect size estimates, which are

common in syntheses of social science research. Prior work focused on devel-

oping and validating the approximations but did not address the practice chal-

lenges encountered in applying them for purposes of planning a synthesis

involving dependent effect sizes. We aim to facilitate the application of these

recent developments by providing practical guidance on how to conduct power

analysis for planning a meta-analysis of dependent effect sizes and by introduc-

ing a new R package, POMADE, designed for this purpose. We present a com-

prehensive overview of resources for finding information about the study

design features and model parameters needed to conduct power analysis, along

with detailed worked examples using the POMADE package. For presenting

power analysis findings, we emphasize graphical tools that can depict power

under a range of plausible assumptions and introduce a novel plot, the traffic

light power plot, for conveying the degree of certainty in one's assumptions.

KEYWORD S

dependent effect sizes, meta-analysis, power, robust variance estimation, traffic light
power plot

Received: 12 February 2024 Revised: 24 June 2024 Accepted: 5 August 2024

DOI: 10.1002/jrsm.1752

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2024 The Author(s). Research Synthesis Methods published by John Wiley & Sons Ltd.

Res Syn Meth. 2024;1–17. wileyonlinelibrary.com/journal/jrsm 1

https://orcid.org/0000-0001-9071-0724
https://orcid.org/0000-0003-0591-9465
https://orcid.org/0000-0002-5976-246X
mailto:mihv@vive.dk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/jrsm
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjrsm.1752&domain=pdf&date_stamp=2024-09-18


Highlights

What is already known
• Power of meta-analysis models for handling statistically dependent effect

sizes can be approximated but is challenging given the lack of common
guidelines for estimating key power parameters.

• Power approximations for meta-analysis of dependent effect sizes perform
reliably when based either on empirical or stylized assumptions about key
design features.

• Power approximations generally overestimate the true power by more than
10% when assuming balanced data (i.e., equal numbers of effect sizes nested
within studies).

• Power approximations involving robust variance estimation (RVE) are more
accurate than other power approximation methods.

What is new
• General guidelines for the conduct of power analysis involving statistically

dependent effect sizes using the correlated and hierarchical effect model
(CHE) with RVE.

• Functions to find the minimum detectable effect size and the number of
studies needed to find a certain effect with a prespecified amount of power
in a meta-analysis context

• The POMADE R package for conducting power analysis of meta-analysis of
dependent effects.

• Graphical tools for presenting a priori power analyses across a range of pos-
sible assumptions.

Potential impact for Research Synthesis Methods readers
• Makes power analysis for meta-analysis of dependent effect sizes easily

accessible and expands its use in the context of systematic reviews involving
meta-analysis.

• Expansion of open science and open data practices.

1 | INTRODUCTION

In meta-analyses on topics in the social and behavioral
sciences, it is very common to include findings from pri-
mary studies that report multiple effect sizes, producing
various types of dependency structures in the meta-
analysis data. Often studies report multiple eligible
results for the same sample of participants (e.g., across
different time points or types of measurements), creating
correlated sample errors, also known as a correlated
effects dependency structure. Studies also often report mul-
tiple results across non-overlapping samples (e.g., for pri-
mary and secondary students, for each of several sites in
a multi-site trial, or for several experiments conducted by
the same group of researchers), creating a multi-level or
hierarchical effects dependency structure. Although the
results are drawn from non-overlapping samples, the fact
the researchers apply the same estimation techniques,

implementation strategies, measurement, etc., creates
dependency among effect size parameters from different
samples within the same study. Often, both dependency
structures appear simultaneously in social science
syntheses.

When faced with dependent effect sizes, Hedges and
Olkin1 and Raudenbush, Becker, and Kalaian2 suggested
the use of multivariate effect sizes models. However,
these models were rarely used in practice3 because they
require knowledge of the true dependency structures
among effect sizes (i.e., the full correlation matrix), and
such information is rarely reported or retrievable from
primary studies. A decade ago, methods4–6 based on
robust variance estimation (RVE) or multi-level modeling
(MLMA) were developed to handle dependency among
effect sizes when the true dependency structure is partly
or fully unknown. A common form of the RVE, the corre-
lated effects (CE) model, assumes that effect sizes are
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dependent because they are measured on the same sam-
ples. The multi-level meta-analysis (MLMA) model
assumes a hierarchical structure to effect sizes, that is,
that they are nested within studies but are measured on
independent samples. Initial implementations of these
models required a choice; either the researcher assumed
that effect size estimates were all correlated or that effect
size estimates were independent and nested within stud-
ies. However, when the meta-analysis data substantially
diverge from the assumptions of either the CE model or
MLMA model, the precision of the models is impacted.7

More recently, Pustejovsky and Tipton propose a new
model,7 known as the correlated-hierarchical effects
(CHE) model, in which multi-level modeling and RVE
are combined while simultaneously accounting for the
correlated and hierarchical effects dependency structures
(therefore also defined as the CHE-RVE model). CHE-
RVE models more closely approximate the true depen-
dency structures found in meta-analysis applications in
the social sciences and increase the statistical power to
find small effects when multiple dependency structures
exist.

1.1 | A priori power considerations

In primary research, researchers often estimate a priori
power for key statistical tests when planning for an appro-
priate sample size. Planning a systematic review is more
challenging because researchers rarely know the number
of eligible studies and other study characteristics prior to a
literature search. Nevertheless, external funders often
require systematic review authors to provide evidence that
conducting a systematic review will be productive. The
increased use of meta-analysis models for dependent effect
sizes has also raised questions about the data requirements
for applying these more complex models. Understanding
the a priori power of meta-analysis models for dependent
effect sizes provides insights about a planned systematic
review, including its potential to support the use of models
that better approximate the multilevel and correlated
nature of effect size data.

Until recently, available power approximation tech-
niques for meta-analysis8–11 were restricted by the
assumption of independence among effect sizes—that is,
that studies provide only one effect size estimate each.
Power approximations developed for models with inde-
pendent effect sizes perform inadequately when used for
approximating power for meta-analysis models with
dependent effect sizes.12 Furthermore, the assumption of
independent effect sizes is rarely fulfilled in the social
and behavioral sciences, where studies commonly report
multiple effect sizes.

In a recent paper, Vembye, Pustejovsky, and Pigott12

developed power approximation formulas for meta-
analysis of dependent effect sizes across the CE, MLMA,
and CHE models. Concurrently, Zhang and Konstanto-
poulos13 developed power approximation formulas for
MLMA models. However, these recent works focused
only on the technical development of power formulas
and evaluation of the accuracy of the proposed approxi-
mations, without providing guidance on how to apply the
developed methods in practice. Thus, we believe there
remains a need to consider the practical challenges that
can be encountered by reviewers in obtaining the rele-
vant quantities and developing reasonable assumptions
as required to actually implement power calculations for
meta-analyses of dependent effect sizes.

1.2 | Aims

In this article, we provide guidelines for conducting
power calculations for meta-analyses of dependent effect
sizes and introduce the POMADE R package14 for this
purpose. The paper has four major aims. First, we review
recently developed power approximations and introduce
novel extensions for approximating the number of studies
required to detect a given effect size and for
approximating the minimum detectable effect size given
pre-specified levels of statistical significance and power.
Second, we give an overview of resources where
reviewers can find information regarding sample charac-
teristics and parameters needed to actually conduct
power calculations. Third, we provide worked examples
of how to conduct power analyses in meta-analysis with
dependent effects. Finally, we introduce new graphical
tools (including the traffic light power plot) for presenting
power analyses across a range of plausible scenarios of
design and sample features as well as model parameters.
Our overarching goal is to make power approximation
formulas for meta-analysis of dependent effect sizes
accessible for researchers planning to conduct meta-
analyses.

In our exposition and examples, we focus on power
analysis based on the CHE-RVE model for several rea-
sons. First, the CHE-RVE model is more comprehensive
than currently available alternatives, in that it allows
both for correlated sampling errors (as in the CE model)
and for heterogeneity both within and between studies
(as in the MLMA model). These other models can be
viewed as special cases of the CHE. For instance, the
MLMA model guarding against misspecification via
RVE15 is a special case of the CHE-RVE model, assuming
that the sample correlation among effect sizes is ρ¼ 0:
However, it is important to note that in cases when either
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no within-study heterogeneity or no correlation between
effect sizes are expected, the CE or the MLMA15 models
are the preferable models to be used. Power approxima-
tion functions for all of the common models for handling
dependent effect sizes are available in the POMADE R
package, and examples of how to use these methods will
be incorporated in the accompanying vignette to the
package. Power approximation formulas were also devel-
oped for the CHE and MLMA models, not guarding
against misspecification via RVE,16 but we do not recom-
mend using these models because they do not control the
nominal Type-I error rate when the number of studies is
limited (i.e., less than 40 studies).

The remainder of the paper proceeds as follows. In
Section 2, we review the statistical foundation of power,
sample size (i.e., the number of studies needed), and min-
imum detectable effect approximation in meta-analysis of
dependent effects. In Section 3, we present various strate-
gies for how investigators can make qualified assump-
tions about the sample characteristics and parameters
needed to conduct meta-analytical power analysis. We go
through each factor one by one. In Section 4, we provide
empirical examples of how to conduct and visualize vari-
ous power, sample size, and minimum detectable effects
analyses. In Sections 5 and 6, we reflect on the utility of
power analysis in meta-analysis and on what it requires
from the research community to make meta-analytical
power analyses common practice.

2 | A PRIORI POWER
APPROXIMATION FOR THE
CHE-RVE MODEL

To illustrate the conduct of power analysis for meta-
analysis of dependent effect sizes, we first describe the
power approximation for a hypothesis test for an overall
average effect based on standardized mean differences17

in which the assumed data-generating process follows
that of the correlated-and-hierarchical effects (CHE)
model as described by Pustejovsky and Tipton.7

The CHE model can be applied for meta-analyzing a
set of studies where some or all included studies contrib-
ute multiple, statistically dependent effect size estimates.
Suppose that we have a collection of J studies to be
included in a meta-analysis, where study j includes kj ≥ 1
effect size estimates, for j¼ 1,…,J. Let Tij denote effect
size estimate i from study j, with corresponding standard
error σij, for i¼ 1,…,kj and j¼ 1,…,J. For simplicity, we
assume that the sampling variances are constant within
each study, so σ21j ¼ σ22j ¼ ��� ¼ σ2kjj ¼ σ2j .

As usual in meta-analysis, the CHE model makes the
assumptions that each Tij is an unbiased estimator of an
effect size parameter θij and that σij is fixed and known.
These assumptions can be expressed as

Tij ¼ θijþ eij, ð1Þ

where eij ¼Tij�θij is the sampling error, which has
expectation zero and variance Var eij

� �¼ σ2j . Effect size
estimates from different studies are assumed to be uncor-
related, so cor ehj,eil

� �¼ 0 when j≠ l, but effect size esti-
mates from the same study may be correlated. Because
information about the sampling correlation between
effect sizes is often not available from included studies,
analysts will typically need to make a more-or-less arbi-
trary assumption about the degree of dependence. With
the CHE model, the correlations between sampling errors
within a given study are all assumed to be equal to a
known constant, cor ehj,eij

� �¼ ρ, specified by the analyst.
This feature of the CHE model captures the “correlated
effects” structure of the data. In Section 3.7, we discuss in
more detail how one can draw assumptions of the value
of ρ:

The other component of the CHE model captures the
“hierarchical effects” structure. Here, it is assumed that
effect size parameters represent a sample from an under-
lying population of effects that has a hierarchical struc-
ture, according to

θij ¼ μþujþ vij, ð2Þ

where the study-level error term uj has mean zero and
variance τ2 and the effect size-level error term vij has
mean zero and variance ω2. The main parameters of the
CHE model are the overall average effect size μ;
the between-study heterogeneity τ2; the within-study het-
erogeneity ω2; and the sampling correlation ρ. Under this
model, we consider power approximations for tests of the
null hypothesis H0 : μ¼ d versus a two-sided alternative,
with specified Type-I error level α.

2.1 | Estimation of CHE

Estimation of the overall average effect size μ entails first
estimating the variance components, τ2 and ω2, and then
using the estimated variance components to take an
inverse-variance weighted average of the effect size esti-
mates. Let bτ2 and bω2 denote full or restricted maximum
likelihood estimators of the variance components, which
are calculated given an assumed sampling correlation ρ.

4 VEMBYE ET AL.
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Given values of these estimators, the overall average
effect size estimate is a weighted average of the study-
specific average effect size estimates, with weights
given by

wj ¼ kj
kjbτ2þkjρσ2j þ bω2þ 1�ρð Þσ2j

ð3Þ

The overall average effect size is estimated as

bμ¼ 1
W

XJ

j¼1
wjTj, ð4Þ

where Tj ¼ 1
kj

Pkj
i¼1Tij and W ¼PJ

j¼1wj. If the CHE model
is correctly specified, then

Var bμð Þ≈ 1
W

: ð5Þ

Hypothesis tests or confidence intervals based on
Equation (5) will perform properly if the assumptions of
the CHE model are good approximations to the true
data-generating process.

In light of the lack of information about the sampling
correlations between effect size estimates, meta-analysts
will often prefer to use tests based on RVE methods,
which maintain close-to-correct Type I error calibration
even if the CHE model is mis-specified. With the CHE
working model, a robust estimator for the variance of bμ is
given by

VR ¼ 1
W2

XJ

i¼1

w2
j Tj�bμ� �2
1� wj

W

� � : ð6Þ

When the working model is correctly specified and
variance components are known, then VR is an exactly
unbiased estimator of Var bμð Þ. However, even if the
assumptions of the working model do not hold and if the
variance components must be estimated, VR remains
close to unbiased.

A robust test of the hypothesis H0 : μ¼ d is based on
the robust Wald test statistic

tR ¼bμ�dffiffiffiffiffiffi
VR

p : ð7Þ

Tipton18 proposed approximating the distribution of
tR under the null hypothesis by a Student-t distribution
with ξ degrees of freedom, where ξ is derived based on a
Satterthwaite approximation under the assumption that

the working model is correct. Specifically, the Sat-
terthwaite degrees of freedom are calculated as

ξ¼
XJ

j¼1

w2
j

W �wj
� �2� 2

W

XJ

j¼1

w3
j

W �wj
� �2

24

þ 1
W 2

XJ

j¼1

w2
j

W �wj

 !2
35�1

:

ð8Þ

The robust Wald test rejects the null hypothesis if
tRj j> cα=2,ξ, where cα=2,ξ is the α=2 critical value from a
Student t distribution with ξ degrees of freedom.

2.2 | Power approximation

Vembye, Pustejovsky, and Pigott12 proposed to approxi-
mate the power of the Wald robust test using a non-
central Student-t distribution, with non-centrality param-
eter given by

λ¼
ffiffiffiffiffi
W

p
μ�dð Þ ð9Þ

and degrees of freedom as given in Equation (8). The
power of the robust Wald test against a two-sided alterna-
tive is then approximated as

Ft �cα=2,ξjξ,λ
� �þ1�Ft cα=2,ξjξ,λ

� �
, ð10Þ

where Ft xjξ,λð Þ is the cumulative distribution function of
a non-central Student-t distribution and cα,ξ is the upper
α-level critical value for the central Student-t distribution
with ξ degrees of freedom, so Ft cα=2,ξjξ,0

� �¼ 1�α=2.
This approximation assumes that the CHE model is cor-
rectly specified.

The power of the test based on CHE-RVE depends on
several parameters: the true average effect size μ, the
between-study variance τ2, the within-study variance ω2,
and the assumed correlation between sampling errors ρ.
In the next section, we discuss strategies for making
assumptions regarding these parameters for purposes of
prospective power analysis and sample size planning.

The power of the test also depends on several features
of the set of studies to be included in the meta-analysis:
the total number of studies (J), the magnitude of their
sampling variances σ21,σ

2
2,…,σ2J

� �
, and the number of

effect sizes contributed by each included study
k1,k2,…,kJð Þ. Prior to completing a systematic review, the

VEMBYE ET AL. 5
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sampling variances and number of effect sizes per study
will not be known precisely. For prospective power anal-
ysis, Vembye, Pustejovsky, and Pigott12 proposed treating
these quantities as random variables that follow some
distribution. The distribution might be based on empiri-
cal data from an initial scoping review or a previous
meta-analysis on a similar topic, or it might be based on
more stylized assumptions involving a parametric distri-
bution. With this approach, the power of the test is calcu-
lated by taking the expected value of Equation (10) over
the distribution of sampling variances and effect sizes per
study. Practically, the expectation is approximated by
drawing a random sample of J sets of study characteris-
tics σ2j ,kj

� �
from specified distributions, calculating λ

and ξ based on the sample of study characteristics, and
then calculating power with Equation (10). This process
is repeated several times, with the expected power level
calculated as the overall average power across repeated
samples. In the POMADE package presented below, this
process is by default repeated 100 times.

2.3 | Sample size planning and
minimum detectable effects

The proposed methods provide a means of approximating
the power of a test of the null hypothesis H0 : μ¼ d versus
a two-sided alternative, given assumptions about the true
overall average effect size, for a meta-analysis with a
specified number of studies. Researchers in the planning
stage of a meta-analysis might use the methods directly
to answer the question “What is the power of this test?”
However, they might also find it useful to frame the ques-
tion somewhat differently. Two alternative framings are
common: one that centers on a target sample size and
one that centers on minimum meaningful effect sizes.

One alternative framing is to pose the question, “How
big a sample is needed to achieve a specified power level?”
To answer this question, one would first specify a desired
power level P, such as the conventional level of P = 0.8, a
minimum effect size of interest μð Þ, and a distribution of
primary study sample sizes and effect sizes per study.
Given these quantities, the number of included studies
J affects power through the total weight W, which in turn
determines the non-centrality parameter λ, and through
the degrees of freedom ξ. Therefore, the target sample
size is the smallest value of J that satisfies the equation

P¼ E Ft �cα=2,ξjξ,
ffiffiffiffiffi
W

p
μ�dð Þ

� �
þ1

h
� Ft cα=2,ξjξ,

ffiffiffiffiffi
W

p
μ�dð Þ

� �i
,

ð11Þ

where the expectation is taken over the distribution of
primary study sample sizes and effect sizes per study. The
solution can be found through a direct grid search over a
range of possible values for J. This feature is integrated
into the find_J_* functions in the POMADE package.

Another alternative framing is to pose the question,
“How small an average effect size can be detected with a
given sample size with a specified power level?” To answer
this question, we would again need to specify a desired
power level P and a distribution of primary study sample
sizes (or variance estimates) and effect sizes per study.
We would also need to specify an anticipated sample size,
J. Given these assumptions, we can find the average
effect size μ that satisfies Equation (11). Just as with the
previous question, the solution can be found through a
direct grid search over a range of possible values for μ,
and is integrated into the MDES_* functions in the
POMADE package.

2.4 | Multi-level meta-analysis as a
special case

MLMA models were originally developed for
meta-analytic databases with a hierarchical dependence
structure, where included studies report results based on
multiple samples or experiments, but there is only one
effect size estimate per sample.19 A corresponding situa-
tion arises in a meta-analysis where studies each report
only one effect size estimate, but studies can be grouped
based on the lab or investigator who conducted them. In
both situations, effect size estimates do not have corre-
lated sampling errors, but dependence arises because the
true effect size parameters may be correlated due to use
of similar operational procedures. Because the CHE
model allows for hierarchical dependence (through the
inclusion of between-study and within-study random
effects), the MLMA model can be understood as a special
case of the CHE model, with zero correlation between
sampling errors for effect size estimates from the same
study (i.e., ρ¼ 0).

Zhang and Konstantopoulos13 proposed power
approximation formulas for MLMA models that are simi-
lar but not identical to the approximations described in
this section. Their approximations are for the test of the
overall average effect that uses model-based variance esti-
mation rather than RVE. The POMADE package also
implements power approximations for model-based vari-
ance estimation, using a t-distribution with degrees of
freedom derived from a Satterthwaite approximation.12

In contrast, Zhang and Konstantopoulos's approximation
uses a normal distribution; the code implementing their

6 VEMBYE ET AL.
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approximations also assumes that the number of effect
sizes per study is a fixed constant. Both of these differ-
ences imply that their approximations will tend to pro-
vide more optimistic estimates of power levels than those
implemented in POMADE. We expect that the approxi-
mations based on the t-distribution with Satterthwaite
degrees of freedom will be more accurate, especially
when the total number of studies is limited or the num-
ber of effect sizes per study is imbalanced.

3 | SUGGESTIONS FOR HOW TO
OBTAIN RELEVANT EMPIRICAL
PARAMETERS AND QUANTITIES
NEEDED FOR POWER
APPROXIMATION

As we have highlighted in the prior sections, reviewers
must make a range of assumptions to conduct reliable
power analyses. This is, of course, a clear limitation of
the methods. To mitigate this limitation, this
section presents guidelines for how researchers could
make plausible and empirically informed assumptions
needed to execute reasonable power approximation. We
discuss each parameter and quantity needed for the
power approximation separately. In the sections below,
we will use the conventional α = 0.05 for all the pre-
sented power calculations. Researchers should, of course,
change the α-level based on their research context.20

3.1 | Smallest effect size of practical
concern, μ

The first thing reviewers will need to determine to con-
duct power analysis of meta-analysis is the smallest effect
of practical concern, μ. The determination of the smallest
effect size of practical importance exclusively hinges on
the specific topic of the review literature. Although com-
mon practice in the social and behavioral sciences, we do
not recommend using general effect size conventions for
small, medium, and large effect sizes such as Cohen's21

or Hattie's22 standards. As others have argued, relying on
such decontextualized standards amounts to “character-
izing a child's height as small, medium, or large, not by
reference to the distribution of values for children of sim-
ilar age and gender, but by reference to a distribution for
all vertebrate mammals.”23

Therefore, the smallest effect size of practical impor-
tance should ideally be deduced from relevant content
sources related to the given discipline(s) and topic(s)
under review. Reviewers should consider a range of fac-
tors such as the cost, complexity, and scalability of the

intervention. Furthermore, μ should be determined by
comparing the intervention(s) to any structurally related
and/or similarly resource-intensive interventions that
have been reviewed in other syntheses.

In education, researchers interested in the effects of
field experiments/interventions on student achievement
could profitably apply Kraft's24 empirical benchmarks for
interpreting the smallest effect size of practical signifi-
cance of educational interventions on standardized
achievement outcomes. If reviewers are concerned with
grade-specific effect sizes, they can also consult Lipsey
and colleagues's23 overview of effect sizes of annual
achievement gains. In psychology, reviewers could con-
sult Schäfer and Schwartz25 to understand meaningful
effect sizes across sub-disciplines.

3.2 | Expected number of studies, J

A major aim of conducting power analysis for meta-
analysis is to gain knowledge about how many studies, J ,
are needed to find the smallest effect size of practical con-
cern. The number of studies expected to be found will
often be based on the reviewers' content-specific knowl-
edge of the given review topic. However, reviewers
should conduct power analyses across a range of assump-
tions about the expected number of studies to allow for
the possibility that the literature search and author solici-
tation reveal further studies unknown to reviewers. If
reviewers are uncertain about the anticipated number of
included studies, they could consult previous syntheses
and reviews on similar research topics and/or from simi-
lar disciplines.3 In education, reviewers could consult
Hattie22 and Ahn et al.'s26 overviews of meta-analyses
across various topics. In medicine, reviewers could con-
sult Davey et al.'s27 overview of the typical numbers of
studies within medical meta-analyses. Across education,
psychology, and medicine, reviewers could look to Tip-
ton, Pustejovsky, and Ahmadi3 for an overview of the
average number of studies included in meta-analyses in
these disciplines. Another source for retrieving empirical
meta-analytical data, including J, is the metadat R
package,28 in which a large number of datasets of previ-
ously conducted meta-analyses are stored.

3.3 | Number of effect sizes per study, kj

Making assumptions about the number of effect sizes per
study, kj, in Equation (3) can be done in various ways.
Ideally, reviewers should obtain this information from
pilot data of previous reviews on related topics. In prac-
tice, however, this advice might be difficult to compile

VEMBYE ET AL. 7
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because many systematic reviews and meta-analyses fail
to provide their data publicly and openly. If data are not
publically available, reviewers could contact previous
review authors to request access. However, this might be
a complicated route since author responses are generally
low.29 If relevant data from previous systematic reviews
is not available, the metadat R package28 could again be
used. Alternatively, reviewers could simulate kj around
the average kj previously found in education, psychology,
or medicine.3,26 We have made this simulation function
available in the POMADE package.

Researchers might be inclined to make the simplify-
ing assumption that all studies in the synthesis will
include the same number of effect sizes (i.e., a “balanced”
design where k1 ¼ k2 ¼…¼ kJ ¼ k). Except when this is
true by design of the review, we recommend against
using such an assumption because it rarely holds in prac-
tice and because, if the true kj varies from study to study,
then the power approximations will systematically over-
estimate the true power of the model.12

3.4 | Study sample sizes, Nj, or sampling
variances, σ2j

To conduct reliable power approximations, reviewers
must further put forward assumptions about the distribu-
tion of sampling variances, σ2j , in the included studies.
Such information might be difficult to retrieve in prac-
tice, but we generally suggest that reviewers obtain this
information either from pilot data of previously con-
ducted reviews on similar research topics or from rele-
vant meta-analytic datasets, such as from the metadat
package. In medicine, reviewers could consult Davey
et al.'s27 overview of the typical study sample sizes within
medical meta-analyses.

For a given effect size metric, the distribution of sam-
pling variances can often be approximated from informa-
tion about the distribution of sample sizes, Nj. For
example, for the standardized mean difference effect size
metric involving comparison of two groups of indepen-
dent observations, the sampling variance of the effect size
estimate is approximately

σ2j ≈
4
Nj

þ μ2

2 Nj�2
� � !

ð12Þ

where μ denotes the anticipated overall average effect
size.17 For meta-analyses of correlation coefficients esti-
mated from samples of independent observations, the
sampling variance of the sample correlation coefficient is
approximately

σ2j ≈
1�ρ2ð Þ2
Nj�1

ð13Þ

where ρ denotes the anticipated overall average correla-
tion.30 In correlational meta-analysis, analysts often pre-
fer to transform the effect size estimates into the metric
of Fisher's z. For Fisher-z-transformed correlations, the
sampling variance of the effect size estimate is

σ2j ≈
1

Nj�3
ð14Þ

to a very close approximation.30

Just as with kj, we do not recommend the assumption
of complete balance about Nj or σ2j (i.e., assuming
N1 ¼N2 ¼…¼NJ ¼N or σ21 ¼ σ22 ¼…¼ σ2J ¼ σ2), because
it is rarely experienced in practice and, if the true Nj and
σ2j vary, the power approximations will overestimate the
true power of the model.12 The POMADE package also
includes functions from which Nj can be simulated in
cases where pilot data is inaccessible.

3.4.1 | Clustering

In education research as in many other settings, primary
study samples often involve clusters of observations.31

For instance, a primary study might use a cluster-
randomized experimental design in which students are
nested in classrooms and entire classrooms are assigned
to different treatment conditions. Clustering has a major
influence on the precision of effect size estimates, and
needs to be taken into account to obtain accurate esti-
mates of effect size variance.32 Likewise, for power
approximations to work properly, reviewers must
account for clustering of observations in the primary
study samples when calculating sampling variances of
the effect size estimates.33,34 Without accounting for clus-
tering, the sampling variances may be much too small,
leading to overly optimistic estimates of the true power of
the given model.

If clustered studies are expected to be included in the
review, it is pivotal that reviewers either apply effective
sample sizes10 (ESS) or sampling variances that account
for variation from the individual and the cluster levels.35

If reviewers have a vector of raw sample sizes, Nj, from
clustered studies, these can be corrected for one level of
clustering by roughly approximating the effective sample
size for study j via

ESSj ¼ Nj

DE
ð15Þ

8 VEMBYE ET AL.
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where DE is the design effect of a two-stage sample
given by

DE¼ 1þ n�1ð ÞρICC ð16Þ

with n being the average cluster size and ρICC the intra-
class correlation coefficient (ICC) for the cluster level.
Relevant compendiums of ICC in education can be found
in Hedges and Hedberg,36 in medicine from Gulliford,
Ukoumunne, and Chinn37 and Verma and Lee,38 and in
psychology from Murray and Blitstein.39 The effecti-
ve_sample_sizes() function from the POMADE
package can be used to correct the raw sample size from
cluster studies.

If reviewers have pilot data containing a vector of sam-
pling variances not including cluster-level variation, these
can roughly be adjusted for cluster bias by multiplying DE
to each sample variance component. The cluster_
bias_adjustment() function from the POMADE
package can be used for this purpose. Ideally, reviewers
should strive to obtain pilot data, including sampling var-
iances estimated from multi-level models or cluster-
robust standard errors or alternatively sampling variance
components that have been cluster-bias corrected as in
Tanner-Smith and Lipsey40 and Dietrichson et al.41

3.5 | Between-study variance
(study-level variance), τ2

When making assumptions about a plausible value for
the between-study variance, τ2, reviewers could consult
previous reviews of similar topics, just as with the other
required assumptions. Linden and Hönekopp42 reported
a survey of heterogeneity levels observed across
150 meta-analyses in different areas of psychology, which
may be useful for establishing benchmark levels of het-
erogeneity; however, their survey was limited in that they
did not distinguish between-study versus within-study
heterogeneity of effect sizes. In medicine, reviewers could
consult Turner et al.43 (c.f. Table 3 herein) in which they
report typical values of the between-study heterogeneity
in medical reviews across various types of outcomes and
interventions.

If information from prior reviews is not available,
reviewers could follow the guideline suggested by Pigott44

in which τ2 ¼ 1
3

� �
σ2 is considered as a low degree of het-

erogeneity, τ2 ¼ σ2 is considered as a moderate degree of
heterogeneity, and τ2 ¼ 3σ2 is considered as a large
degree of heterogeneity, where σ2 is the average sample
variance expected to be found in the given literature.
Reviewers could consult Fraley and Vazire45 to gain an
overview of common study sample sizes in psychology

journals. To make these calculations accessible to
reviewers, we have made this procedure available via the
tau2_approximation() function from the POMADE
package. To recognize the uncertainty of the τ2 estima-
tion, we highly recommend that power approximations
are conducted across a range of possible values of τ2. To
make more intuitive estimates of τ2, it can be advanta-
geous to think of the study-level heterogeneity in terms
of between-study standard deviation (SD) units because
these are on the same scale as the mean effect size, μ.

3.6 | Within-study variance (effect size
level variance), ω

As with the τ2 estimate, the true within-study variance,
ω2, could be obtained from result sections of previous
reviews of similar research topics or estimated from rele-
vant pilot data with dependent effect sizes. Similarly, we
suggest that reviewers think of the effect-level heteroge-
neity in terms of within-study SD because it allows for a
more intuitive interpretation of this variance component.
It might also be helpful to think of ω relative to τ or vice
versa. Say for example that reviewers expect one-third of
the total true variance to come from within-study hetero-
geneity, then ω2 ¼ τ2�0:5. As with τ2, we think it is good
practice to conduct power analyses across a range of
within-study SD estimates to acknowledge the uncer-
tainty of one's assumptions, perhaps highlighting the
most likely scenario. We elaborate more thoroughly on
this procedure in Section 4.

3.7 | Assumed sample correlation, ρ

Finally, reviewers have to make assumptions about the
expected sampling correlation among outcomes coming
from the same study. This is indeed a tricky part of the
power approximation of the CHE-RVE model. However,
there are certain ways that reviewers can make reliable
estimates of ρ. First, reviewers could search for literature
in relevant disciplines for common sample correlations
among the outcome measures relevant for the review.
Second, if raw primary data containing multiple eligible
outcomes measures are available to the reviewers, ρ
could be estimated from this data. For example, Vembye,
Weiss, and Bhat46 used individual participant-level data
from the Project STAR to estimate ρ and inform the
choice of ρ in their systematic review regarding the
effects of collaborative models of instruction on student
achievement. Third, if reviewers have access to relevant
meta-analytical pilot data containing studies reporting
two outcome measures, then ρ could be roughly

VEMBYE ET AL. 9
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approximated by estimating the correlation between the
pairs of effect sizes estimates from those studies that pro-
vide both types of outcomes measures.47 In this case, it is
recommended to obtain at least 10 such studies to be able
to obtain a reliable estimate of ρ.47 Independently of the
used methods to obtain ρ, we suggest that reviewers con-
duct power analyses across a range of different assump-
tions about ρ to assess the impact of ρ on estimated
power levels.

4 | EMPIRICAL EXAMPLE

4.1 | Replication materials

All R codes for replicating the below-presented power
approximation examples are available on the Open Sci-
ence Framework https://osf.io/vpnmb/. For plot genera-
tion, the POMADE package draws on the ggplot2 R
package.48

4.2 | Power example of the CHE-RVE
model using relevant pilot data

We now illustrate the process of power analysis for meta-
analysis of dependent effect sizes. Suppose that we are
planning a meta-analysis about the effects of extending
the school day on student achievement. To compute
power for the overall average effect, we use pilot data
from Vembye, Weiss, and Bhat's46 (henceforth VWB23)
meta-analysis on the effects of collaborative models of
instruction on student achievement. We consider this
study an appropriate source of pilot data because collabo-
rative instruction interventions represent viable alterna-
tives to increasing the length of the school day. From this
systematic review and pilot data,1 we can find all of the
relevant parameters and quantities needed to conduct
power analysis except for the smallest effect size of practi-
cal concern. As previously emphasized, the smallest
effect size of substantial concern should be deduced from
theoretical and practical considerations and not
from universal guidelines.

VWB23 found a total of 76 studies eligible for meta-
analysis, of which 82% of the effect sizes were adjusted
for pretest measures. The database includes both CHEs
dependence structures, supporting the use of the CHE-
RVE model. Based on this information, we assume that
we will find 76 studies � 10, which we think is a plausible
range because it falls within the average number of stud-
ies found in education and applied psychology.3 In addi-
tion, VWB23 found a substantial amount of
heterogeneity, with variance components (reported as

SDs) of 0.25 SD at the effect size level (ω) and 0.1 SD at
the study level (τ). VWB23 estimated ρ≈ 0.7 from paired
effect size estimates for studies both reporting STEM and
Language Arts outcomes, as suggested by Kirkham
et al.47 From the VWB23 data, it is furthermore possible
to obtain a vector of kjs, with kj = 3.8, ranging from 1 to
27, and a vector of cluster bias-corrected σ2j s aggregated
to the study level. Cluster bias correction was needed in
this case because 67 out of the 76 included studies did
not adequately account for nesting of students within
classes and schools. Because both collaborative models of
instruction and increased instruction time are provided
at the class level, it is important to account for clustering
in such reviews.32

In this case, we define the smallest effect size of prac-
tical importance relative to the overall effect size of inter-
ventions with similar cost and resource intensity, such as
co-teaching and class size reduction, both of which
appear to have an overall average effect of approximately
0.1 SD.46,49 Consequently, we consider an overall average
effect size falling below 0.1 to be irrelevant compared to
these related interventions. With all the needed assump-
tions in place for power approximation of the mean effect
size of the CHE-RVE model, power can be approximated
from the power_MADE() function from the POMADE
package. By using the sample characteristics and esti-
mated parameters from VWB23 (i.e., empirically sam-
pling kjs and σ2j s from the VWB23 data and specifying
J ¼ 76, τ¼ 0:1, ω¼ 0:25, ρ¼ :7), it appears that the CHE-
RVE yields 76.1% power to detect μ = 0.1.

4.3 | Number of studies needed to find
the smallest effect of interest

The POMADE package also provides functions that allow
researchers to answer questions concerning how many
studies are needed to obtain a specified power level, given
an effect size considered to be of practical interest and a
prespecified level of statistical significance. This can be
investigated via the min_studies_MADE() function.
Based on the assumptions described above, we can see
that it would require 84 studies to have 80% power to
detect μ¼ 0:1 under these conditions.

4.4 | Minimum detectable effect size

Another feature of the POMADE package is the mdes_

MADE() function, which allows one to answer questions
about the minimum detectable effect size (MDES) for a
specified sample size, given preset levels of statistical sig-
nificance and power as well as parameter values and

10 VEMBYE ET AL.
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study characteristics. Using this function, we find that
the smallest effect size detectable with 80% power under
the given conditions is 0.105, which is quite close to the
smallest effect size considered to be of practical relevance
under the conditions given in the previous examples.

4.5 | Plotting

4.5.1 | Traffic light power plots

We acknowledge that it can be rather difficult to make
definitive assumptions about the true model parameters
and sample characteristics, including the final number of
studies. For instance, our heterogeneity parameter
assumptions were based on estimates from pilot data,
and thus subject to some degree of uncertainty. Reporting
only one power estimate can be misleading, even if the
true model and data structure diverge only modestly from
one's initial assumptions. To maximize the informative-
ness of the power approximations, we suggest accommo-
dating the a priori uncertainty of the power
approximations by reporting or plotting power estimates
across a range of possible scenarios. Figure 1 depicts such
a plot, in which power estimates are approximated across
varying assumptions of τ, ω, ρ, and J. With such a plot,

investigators can also illustrate the interval in which they
expect the final number of studies to fall. This provides a
means for reviewers to assess the consequences of the
assumptions for the power level and determine under
which scenarios the model power exceeds a target level.
In this context, we applied the convention of setting 80%
power as the minimum acceptable power level for model
fitting, meaning that the Type I error is considered four
times as serious as making a Type II error.21

To further augment and more clearly illustrate the
assumptions put forward by the investigator, we suggest
illustrating the likelihood of the reviewers' assumptions
by coloring the strips of the facetted plots, with green
indicating the expected scenario, yellow indicating other
plausible scenarios, and red indicating other, even less
likely scenarios.2 Consequently, we coin this type of plot
as a traffic light power plot. Traffic light assumptions
should ideally be deduced from prior work related to
one's topic. From illustrations such as Figure 1, it should
be more clear to others, including funders, what they can
expect in terms of power, while also acknowledging some
degree of uncertainty in these estimates. We suggest
approximating no more than four less likely assumptions
to keep the scenarios depicted down to a manageable
number. Investigators can make the power plot displayed
in Figure 1 by using the plot_MADE() function in the

FIGURE 1 Traffic light power plot across J (CHE-RVE). Dashed lines indicate power of 80%. Shaded gray areas mark the range of

studies expected to be found by the reviewers (in this case 76 ± 10). the colors of the strips indicate the reviewers' expectation of the

likelihood of the given scenarios appearing in the dataset and analysis with green representing expected scenarious.

VEMBYE ET AL. 11
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POMADE package, including for their own preferred
values of the parameters τ, ω, ρ, and J .

When planning a meta-analysis, reviewers should
take particular care to develop plausible assumptions
about the likely magnitude of design parameters that
have relatively strong influence on the anticipated power
of the study. The sensitivity analysis depicted in traffic
light plots such as Figure 1 are helpful in assessing such
questions. Under the most likely conditions for within-
and between-study heterogeneity, power for J ¼ 70 stud-
ies ranges from 0.69 to 0.83 across the values of ρ. When
τ¼ 0:1 (the most likely scenario), ρ¼ 0:7, and J ¼ 70 stud-
ies, power ranges from 0.61 to 0.91 across the values of ω.
Finally, when ω¼ 0:25 (the most likely scenario), ρ¼ 0:7,
and J ¼ 70 studies, power ranges from 0.57 to 0.81 across
the values of τ. Thus, power is most sensitive to the
assumption regarding ω, the degree of within-study het-
erogeneity. However, this pattern is specific to this partic-
ular example, including especially to our assumptions
regarding the distribution of effect sizes per study. Under
different assumptions, anticipate power may be relatively
more sensitive to other design parameters, such as the
correlation between effect size estimates ρ.

4.5.2 | Interpretation of power analyses

Substantively, Figure 1 illustrates the power of a test
based on the CHE-RVE model to find μ¼ 0:1 across the
assumptions we made regarding the effect of increased
instruction time on student achievement. The green
strips indicate our expectation to find τ¼ 0:1 and
ω¼ 0:25 based on the variance estimates from VWB23 (τ
and ω are here reported as SDs so that they can be inter-
preted in the same unit as μ). Furthermore, the gray
shades in Figure 1 depict our expectation to find �
10 studies of what was found in VWB23, which also hap-
pens to be the mean number of studies reported in the
Review of Education Research and Applied Psychology
journals.3 The four lines in the traffic light power plot
indicate various assumptions about the common sample
correlation among effect sizes coming from the same
study, ρ. We assumed ρ¼ 0:7, and under the expected
(green) scenario in panel (11) in Figure 1, power esti-
mates range from �70% power with 66 studies to �80%
power with 86 studies. Though power does not exceed
80% in all scenarios, we would still suggest proceeding
with meta-analysis, considering that a minor reduction of
the within-study variance would yield power above 80%.
As can be seen in panel (7) in Figure 1, reducing ω with
0.1 SD would increase power by 10% or more and thus
produce power above 80% across the likely range for the
expected number of studies (J). A further implication of

these results is that the investigators could consider
whether they can tighten their selection criteria to reduce
the within-study SD. For example, averaging results
across subscale or subgroup results irrelevant to the main
analyses of the given review might help to avoid artificial
inflation of the within-study SD.

4.5.3 | Number of studies (J)

Besides power, the plot_MADE() function also includes
the option to visualize how many studies are needed to
detect a given effect size of practical concern across vary-
ing assumptions about τ, ω, and ρ. From plots like
Figure 2, researchers can gain knowledge about the tar-
get range of the number of studies needed to detect the
smallest effect size of practical concern. Furthermore, if
this kind of analysis is conducted across multiple values
of μ, the plot_MADE() function allows reviewers to
visualize how the number of studies needed changes as a
function of the smallest effect size of interest, as pre-
sented in Figure 3.

4.5.4 | Minimum detectable effect size

Finally, the plot_MADE() function can be used to
understand and visualize how the minimum detectable
effect size varies across the number of included studies
and various model parameters, as presented in Figure 4.
Concretely, Figure 4 provides a means for reviewers to
understand what effect sizes can be detected under a
range of different data and model assumptions. From
Figure 4, it can, for instance, be seen that across all the
different scenarios, reviewers can at minimum detect a
moderate24 effect, clearly justifying meta-analysis.

5 | UTILITY OF PROSPECTIVE
POWER ANALYSIS FOR
META-ANALYSIS

One of the major aims of a priori power analysis for
meta-analysis is to shed light on the utility of a planned
systematic review. Prospective power calculations can
inform reviewers and funders if enough studies are avail-
able to find the smallest effect size of practical or substan-
tial concern and thus whether the literature is mature
enough for a meta-analysis. However, we must empha-
size that power calculations should not be the sole or
determinative factor when considering whether to under-
take (or to fund) a synthesis, and reviewers should be
careful abandoning meta-analysis based on power

12 VEMBYE ET AL.
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analyses conducted before the full literature search.
Power pertains only to hypothesis-testing aims of a
review, but syntheses might also have aims focused more
on summary estimation or characterization of

heterogeneity—or even on simply describing and orga-
nizing a literature. We agree with Valentine et al.10 that
reviewers should strive to apply some kind of meta-
analytical approach, “[n]ot because it is ideal but rather

FIGURE 2 Studies needed to find μ¼ 0:1 across varying values of τ2 and ω2 (CHE-RVE).

FIGURE 3 Number of studies needed as function of μ (CHE-RVE).

VEMBYE ET AL. 13
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because given the need for a conclusion (e.g., an adminis-
trator who needs to pick a program), it is a better analysis
strategy than the alternatives.”

A further reason to be cautious in using power calcu-
lations is that, as we have illustrated, the approximations
involved require extensive assumptions that can be error-
prone (and thereby misleading). For example, a larger
number of eligible studies might be revealed to the
reviewers during the literature search, such as through
searches of gray literature databases.10 As anecdotal evi-
dence to support this possibility, the first author was a
part of a review46 in which the authors only expected to
find 20 eligible studies but ended up finding 128 studies,
with approximately 100 studies coming from gray litera-
ture searches.

If a reviewer finds that the planned meta-analysis will
have lower power than anticipated, we recommend pro-
ceeding with the meta-analysis, and consider alternative
modeling strategies7,50,51 or other relevant quantitative
alternatives.10,52 If reviewers identify few studies, they
could also consider using Bayesian meta-analytical tech-
niques, using informed priors of μ.51 This can potentially
ease the interpretability of the meta-analysis results based
on few studies. In the social and behavioral sciences, it is
common to find many small studies that contribute a
large number of effect size estimates to the overall data-
base. In such cases, prospective power calculations can

be informative about the consequences of including a
large proportion of such studies on the within-study
variance estimation in random-effects models. This infor-
mation can suggest whether reviewers should consider
alternative strategies such as averaging within-study
results reported across subgroups and/or sub-scales irrel-
evant to the main analyses of the given review.50 By
reducing the number of imprecise effect sizes, it might be
possible to avoid artificially inflating the within-study
variance estimation and thereby gain power for their
models. Further methodological investigation of such
strategies strikes us as warranted.

Power analysis focuses exclusively on statistical signif-
icance testing and thus, to some degree, requires arbi-
trarily selected cutpoints for determining statistical
significance and desired power levels. Consequently, we
urge investigators to be careful in decisions about con-
ducting a meta-analysis based on a priori power analyses
unless the evidence is decisive. Future research could
profitably concentrate on developing alternative methods
that complement power analysis. One possibility is preci-
sion analysis,53 which aims to approximate the number
of studies needed to obtain confidence intervals of a cer-
tain width with a given probability. With precision analy-
sis, reviewers would not need to premise the conduct of
meta-analysis on a dichotomized choice of either having
or not having adequate power to find the smallest effect

FIGURE 4 Minimum detectable effect size plot as function of J (CHE-RVE). Dashed lines indicate the smallest effect size of practical

concern. Shaded gray areas mark the range of studies expected to be found by the reviewer.

14 VEMBYE ET AL.
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of practical concern. Nevertheless, we still believe power
analysis for meta-analysis of dependent effect sizes pro-
vides a means for reviewers to gain an a priori under-
standing of the given stage and maturity of the literature
in point for review.

Finally, an over-arching benefit of conducting a priori
power analysis is that it requires the reviewers to plan for
and think carefully about the likely structure of their
meta-analysis dataset and about the smallest effect size of
practical interest. This might naturally yield a deeper
understanding of the structure of the literature as well as
the topic under review and thus encourage more fine-
grained and content-relevant interpretations of the final
meta-analysis results. However, it is important to note
that prospective power analyses should not be compared
to the final results because, by definition, they do not add
any further information to the final results.10

6 | CONCLUSION

In this article, we have developed common guidelines for
conducting power analysis for meta-analysis of depen-
dent effect sizes and introduced the POMADE package
for this purpose. Moreover, we have introduced new
graphical tools for illustrating power approximations
across a range of plausible scenarios. As is apparent from
the above illustration, power approximations for meta-
analysis will be more informative when based on pilot
data from previous syntheses on a similar research topic.
This circumstance is further impetus for the entire
research synthesis community to embrace and follow
open science and open data54 policies, so that prospective
power analyses can be conducted using well-justified,
empirically supported assumptions. With this paper, we
hope to have provided guidance needed for investigators
to apply the power approximations as common practice
for future systematic reviews involving meta-analysis. On
this note, we invite readers to provide feedback
on whether this guidance adequately meets the chal-
lenges that they encounter as well as on the utility of the
POMADE software package.
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ENDNOTES
1 Find data and background material for this study at https://osf.io/
fby7w/.

2 When needed this type of plot can be made color-blind friendly
by for example using a gray-scale version with white indicating
the expected scenario, light gray indicating other plausible scenar-
ios, and dark gray indicating other, even less likely scenarios. We
have written the plot_MADE() function so that the user can apply
their preferred palette.
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